Chapter 16: Random Variables

Key Vocabulary:

- random variable
- standard deviation
- discrete random variable
- continuous random variable
- expected value
- s random
- E(X)
- V(X)

Calculator Skills:

- 1-VarStats L1, L2
- 1. What is meant by a random variable?
- 2. Explain the difference between a discrete random variable and a continuous random variable.
- 3. What information does a probability model give?
- 4. What is the expected value of a random variable?
- 5. How do you calculate the expected value of a random variable?
- 6. Explain the difference between the notations \overline{x} and μ_x .
- 7. Suppose $\mu_X = 5$ and $\mu_Y = 10$. According to the rules for means, what is μ_{X+Y} ?
- 8. Suppose $\mu_X = 2$. According to the rules for means, what is μ_{3+4X} ?

- 9. Explain how to calculate the variance of a discrete random variable X using the formula $\sigma_x^2 = \sum (x_i \mu_x)^2 p_i$
- 10. Given the variance of a random variable, explain how to calculate the standard deviation.
- 11. Suppose $\sigma_x^2 = 2$ and $\sigma_y^2 = 3$ and X and Y are independent random variables. According to the rules for variances, what is σ_{X+Y}^2 ? What is σ_{X+Y} ?
- 12. Suppose $\sigma_X^2 = 4$. According to the rules for variances, what is σ_{3+2X}^2 ? What is σ_{3+2X} ?

Chapter 16: Random Variables

Chapter 17: Probability Models

Key Vocabulary:

- Bernoulli trials
- Geometric model
- Binomial model

Calculator Skills:

geometpdf(geometcdf(binompdf(

binomcdf(

- 1. List three characteristics of Bernoulli trials.
- 2. What is the variable of interest in a *geometric model*?
- 3. How do you find the *expected value* and *standard deviation* of a *geometric random variable*?
- 4. In the *geometic distribution*, what does the parameter *p* represent?
- 5. If *X* has a *geometric distribution*, what does $(1-p)^{n-1}p$ represent?
- 6. What is the difference between a *probability distribution function* (pdf) and a *cumulative distribution function* (cdf)?
- 7. What is the variable of interest in a *binomial model*?

8. Explain the difference between the *binomial setting* and the *geometric setting*.

- 9. How do you find the *expected value* and *standard deviation* of a *binomial random variable*?
- 10. In the *binomial distribution*, what do parameters *n* and *p* represent?
- 11. What is meant by B(n, p)?

12. In the formula
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
, what does *n* represent? What does *k* represent?

What does the value of
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 represent?

13. Complete the following table of values:

1!	1	1
2!	2 x 1	2
3!	3 x 2 x 1	6
4!	4 x 3 x 2 x 1	24

14. What is the value of
$$\frac{n!}{(n-1)!}$$
?

5!	5 x 4 x 3 x 2 x 1	
6!		
7!		
n!		