# Chapter 18: Sampling Distribution Models

#### **Key Vocabulary:**

- parameter
- statistic
- proportion

- sampling distribution model
- Central Limit Theorem
- 1. Explain the difference between a *parameter* and a *statistic*.
- 2. Explain the difference between *p* and  $\hat{p}$ ?
- 3. What is meant by *sampling variability*?
- 4. What is meant by the *sampling distribution model* of a statistic?
- 5. How is the size of a sample related to the *spread* of the sampling distribution?
- 6. In an SRS of size *n*, what is true about the sampling distribution of  $\hat{p}$  when the sample size *n* increases?
- 7. In an SRS of size *n*, what is the mean of the sampling distribution of  $\hat{p}$ ?
- 8. In an SRS of size *n*, what is the standard deviation of the sampling distribution of  $\hat{p}$ ?

Standard error

9. What happens to the standard deviation of  $\hat{p}$  as the sample size *n* increases?

10. When does the formula 
$$\sqrt{\frac{pq}{n}}$$
 apply to the standard deviation of  $\hat{p}$ ?

- 11. When the sample size *n* is large, the sampling distribution of  $\hat{p}$  is approximately normal. What test can you use to determine if the sample is large enough to assume that the sampling distribution is approximately normal?
- 12. The mean and standard deviation of a population are *parameters*. What symbols are used to represent these *parameters*?
- 13. The mean and standard deviation of a sample are *statistics*.What symbols are used to represent these *statistics*?
- 14. Because averages are less variable than individual outcomes, what is true about the standard deviation of the sampling distribution of  $\overline{x}$ ?
- 15. What is the mean of the sampling distribution of  $\overline{x}$ , if  $\overline{x}$  is the mean of an SRS of size *n* drawn from a large population with mean  $\mu$  and standard deviation  $\sigma$ ?
- 16. What is the standard deviation of the sampling distribution of  $\overline{x}$ , if  $\overline{x}$  is the mean of an SRS of size *n* drawn from a large population with mean  $\mu$  and standard deviation  $\sigma$ ?



Chapter 18: Sampling Distribution Models



17. To cut the standard deviation of  $\overline{x}$  in half, you must take a sample \_\_\_\_\_ times as large.

18. When should you use  $\frac{\sigma}{\sqrt{n}}$  to calculate the standard deviation of  $\overline{x}$ ?

- 19. If  $\sigma$  is not known, what can you use to estimate the standard deviation of  $\overline{x}$ ? What is this called?
- 20. What does the central limit theorem say about the shape of the sampling distribution of  $\overline{x}$ ?
- 21. What does the law of large numbers state?



# **Chapter 19: Confidence Intervals for Proportions**

#### **Key Vocabulary:**

standard error

- margin of error
- critical value
- confidence level confidence interval
- one-proportion z-interval

### **Calculator Skills:**

1-PropZInt

1. Describe the sampling distribution model of  $\hat{p}$ . What assumptions must you make for this description to be reasonable?

2. What is the standard error of  $\hat{p}$ ? When would you use standard error in place of standard deviation?

- 3. Explain the meaning of the following statement: "We are 95% confident that between 42.1% and 61.7% of sea fans are infected."
- 4. What is meant by a *confidence interval*?
- 5. What is the general form of a *confidence interval* for a one-proportion z-interval?

- 6. Explain how to calculate *margin of error*.
- 7. As the *confidence level* increases, what happens to the *margin of error*? What happens to the *confidence interval*?
- 8. By how many times must the sample size *n* increase in order to cut the *margin of error* in half?
- 9. Why is it best to have high *confidence* and a small *margin of error*?
- 10. What is the *critical value*  $z^*$  for a 90% *confidence interval*? Draw a sketch.

11. What is the *critical value*  $z^*$  for a 95% *confidence interval*? Draw a sketch.

12. What is the *critical value*  $z^*$  for a 99% *confidence interval*? Draw a sketch.



Chapter 19: Confidence Intervals for Proportions

13. What assumptions and conditions must you consider before creating a *confidence interval* for a proportion?



14. What effect does increasing your sample size have on the *margin of error*? What effect does it have on the *confidence level*? What effect does it have on the *confidence interval*?

15. The formula used to determine the sample size *n* that will yield a confidence interval for a population proportion with a specified margin of error *m* is  $m = z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$ . Solve for *n*.



## Chapter 20: Testing Hypotheses About Proportions

#### **Key Vocabulary:**

- hypothesis
- null hypothesis
- reject (the null hypothesis)
- fail to reject (the null hypothesis)
- alternative hypothesis

### **Calculator Skills:**

- 1-Prop ZTest
- 1. What is a *hypothesis*?
- 2. After analyzing a set of data, if the results support a *hypothesis*, does that prove the *hypothesis* is true? Explain.
- 3. After analyzing a set of data, if the results are inconsistent with a *hypothesis*, does that prove the *hypothesis* is false? Explain.
- 4. What does it mean to *reject* a *hypothesis*?
- 5. When testing *hypotheses*, always start by assuming that the *null hypothesis* is true. What is meant by a *null hypothesis*?

6. Given a *null hypothesis*  $H_0: p = p_0$ , what are the parameters of the Normal sampling distribution model? Under what conditions is this model appropriate?

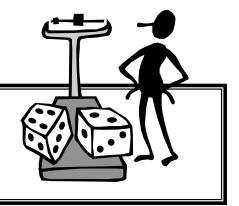
7. How would you determine whether a particular value of  $\hat{p}$  is so unlikely to have occurred (assuming  $p = p_0$ ) that you would *reject* the *null hypothesis*?

- 8. Why do we say we "*fail to reject*" the *null hypothesis* rather than "accept" the *null hypothesis*?
- 9. What is meant by an *alternative hypothesis*?
- 10. What is meant by a P-value?
- 11. Explain the difference between a two-sided alternative hypothesis and a one-sided alternative hypothesis. Draw a sketch



Chapter 20: Testing Hypotheses About Proportions

### **Chapter 21: More About Tests**


### **Key Vocabulary:**

- P-value
- statistically significant
- Type I Error Type II Error

alpha level

- power

- significance level
- 1. Explain what the *p*-value represents.
- 2. What is meant by an *alpha level*?
- 3. What does it mean for a result to be *statistically significant*?
- 4. A 95% confidence interval corresponds to a two-sided hypothesis test at what *alpha level*?
- 5. A 90% confidence interval corresponds to a one-sided hypothesis test at what *alpha level*?
- 6. Explain the difference between a *Type I* and *Type II Error*.
- 7. What is the probability of a *Type I Error*?
- 8. What is meant by the *power* of a test?
- 9. How do you calculate the *power* of a test?



## Chapter 22: Comparing Two Proportions

#### **Key Vocabulary:**

pooling

**Calculator Skills:** 

2-Prop Z-Int 2-Prop Z-Test

1. What conditions and assumptions are necessary for the sampling model of  $\hat{p}_1 - \hat{p}_2$  to be approximately Normal?

- 2. If the above conditions and assumptions are met, what is the mean and standard deviation of the sampling model?
- 3. Describe how to construct a level C confidence interval for the difference between two proportions,  $p_1 p_2$ .
- 4. Explain what is meant by pooling two samples. When is it appropriate to pool samples?
- 5. For a two-sample hypothesis test where  $H_0: p_1 p_2 = 0$ , show how to calculate the z test statistic?