Requirement	Met by satisfying this condition	For these tests and confidence intervals:
2 separate populations and	a random sample from each of the populations	2 sample t-test and confidence interval for difference of two means 2 sample z-test and confidence interval for difference of two proportions X^{2} test of homogeneity
Observations are independent	Random sample(s) Note: This only applies when actually sampling from a population. In an observational study there may not be an actual population out there. For experiments, random assignment to treatment	1 sample t-test and confidence interval for means 2 sample t-test and confidence interval for difference of two means matched pairs t-test and confidence interval for mean difference 1 sample z-test and confidence interval for proportions 2 sample z-test and confidence interval for difference of two proportions test and confidence interval for linear relationship X^{2} test of goodness of fit X^{2} test of association X^{2} test of homogeneity
The population is large enough to use appropriate form of $\sqrt{\frac{p q}{n}}$ or $\frac{S_{x}}{\sqrt{n}}$ to approximate the standard deviation(s) of the sampling distribution(s)	$N \geq 10 n$ $\mathrm{N}_{1} \geq 10 \mathrm{n}_{1} \text { and } \mathrm{N}_{2} \geq 10 \mathrm{n}_{2}$ Note: This only applies when actually sampling from a population. In an observational study there may not be an actual population out there.	1 sample t-test and confidence interval for means matched pairs t-test and confidence interval for mean difference 1 sample z-test and confidence interval for proportions 2 sample t-test and confidence interval for difference of two means 2 sample z-test and confidence interval for difference of two proportions

Requirement	Met by satisfying this condition	For these tests and confidence intervals:
The normal distribution may be used to determine the p value if ...	$\mathrm{n} \vec{p}$ and $\mathrm{n} \ddot{q}$ are both at least 10 . np and nq are both at least 10. $\mathrm{n}_{1} \eta_{1}$ and $\mathrm{n}_{1} q_{1}$ and $\mathrm{n}_{2} \ddot{p}_{2}$ and $\mathrm{n}_{2} \mathscr{q}_{2}$ are all at least 5 . $n_{1} p_{1}$ and $n_{1} q_{1}$ and $n_{2} p_{2}$ and $n_{2} q_{2}$ are all at least 5.	1 sample z Confidence Interval for proportions 1 sample z-test for proportions 2 sample z-confidence interval for difference of two proportions 2 sample z-test for difference of two proportions
The t distribution may be used to determine the p -value if...	the population has a normal distribution or if $n<15$, and the distribution of the data is fairly symmetric with no outliers or, if $15 \leq \mathrm{n} \leq 40$ and the sample data has no large outliers or, if $n>40$. Both samples or populations meet the above criteria. The distribution of the differences meets the above criteria.	1 sample t-test or Confidence Interval for means 2 sample t-test or Confidence Interval for difference of two means matched pairs t-test or Confidence Interval for mean difference

Requirement	Met by satisfying this condition	For these tests and confidence intervals:
The sample is large enough to use the X^{2} procedures to determine the p value	All expected counts are at least 1 and no more than 20% of the expected counts are smaller than 5.	X^{2} test of goodness of fit X^{2} test of association X^{2} test of homogeneity
There is an approximately linear relationship between μ_{y} and $x:$ i.e. $\mu_{y}=\sigma+\beta x$	The residuals $(y-\bar{y})$ are randomly scattered and the residuals are independent and the distribution of the residuals is approximately normal.	t test and confidence interval for linear relationship
	Note: Linearity may have to be assumed from the given graph or statistics.	

