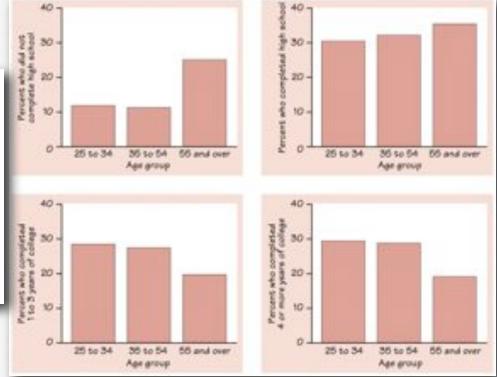
Relations in Categorical Data

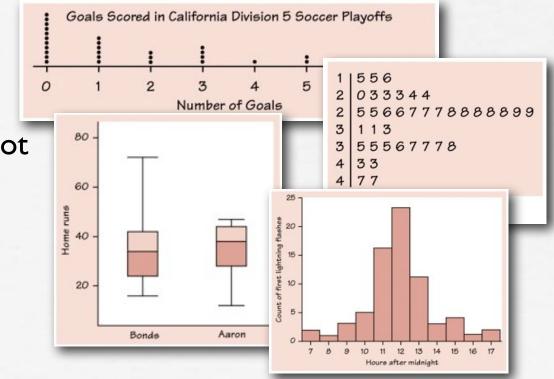
When categorical data is presented in a two-way table, we can explore the marginal and conditional distributions to describe the relationship between the variables.

Education	25 to 34	35 to 54	55+	Total
Did not complete high school	4,474	9,155	14,224	27,853
Completed high school	11,546	26,481	20,060	58,087
1 to 3 years of college	10,700	22,618	11,127	44,445
4 or more years of college	11,066	23,183	10,596	44,845
Total	37,786	81,435	56,008	175,230



Describing Data

- When starting any data analysis, you should first
 PLOT your data and describe what you see...
 - 🖗 Dotplot
 - 🖗 Stemplot
 - 🖗 Box-n-Whisker Plot
 - 🖗 Histogram



Describe the SOCS

- After plotting the data, note the SOCS:
 Shape: Skewed, Mound, Uniform, Bimodal
 - **Outliers**: Any "extreme" observations
 - Senter: Typical "representative" value
 - Spread: Amount of variability

Numeric Descriptions

DataDesk

Summaryof sp No Selector	ending
Percentile 25	6
Count	50
Mean	34.7022
Median	27.8550
StdDev	21.6974
Min	3.11000
Маж	93.3400
Lowerith %tile	19.2700
Upperith %tile	45.4000

While a plot provides a nice visual description of a dataset, we often want a more detailed numeric summary of the center and spread.

Minitab

Descr:	ipt:	ve	Sta	tist	ics
--------	------	----	-----	------	-----

Variable	N	Mean	Median	TrMean	StDev	SEMean
spending	50	34.70	27.85	32.92	21.70	3.07
Variable spending	Min 3.11	Max 93.34	Q1 19.06	Q3 45.72		

1-Var Stats
x=35.4375
$\sum x=567$
$\sum x^2 = 22881$
Sx=13.63313977
σx=13.20023082
↓n=16

Measures of Center

When describing the "center" of a set of data, we can use the mean or the median.

Mean: "Average" value $\overline{x} = \frac{\sum x}{n}$ **Median**: "Center" value Q2

Measures of Variability

- When describing the "spread" of a set of data, we can use:
 - Range: Max-Min
 - □ InterQuartile Range: /QR=Q3-Q/
 - **Standard Deviation**: $\sigma = \sqrt{\frac{\sum (x \overline{x})^2}{n 1}}$

Numeric Descriptions

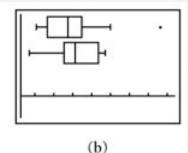
- When describing the center and spread of a set of data, be sure to provide a numeric description of each:
 - Mean and Standard Deviation
 - 5-Number Summary: Min, Q1, Med, Q3, Max {Box-n-Whisker Plot}

Determining Outliers

- When an observation appears to be an outlier, we will want to provide numeric evidence that it is or isn't "extreme"
- We will consider observations outliers if:
 - More than 3 standard deviations from the mean.
 - Or
 - More than I.5 IQR's outside the "box"

	-	_	 -
μŪ	ŀ		

(a)

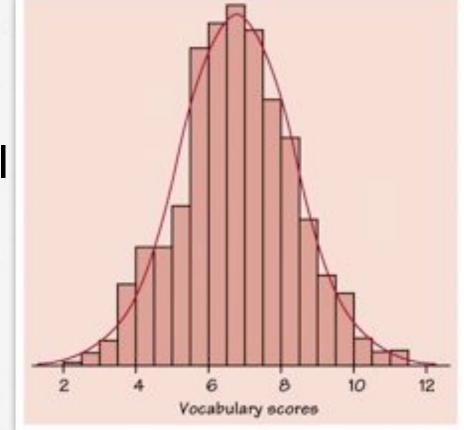


1	69
2	455
3	3344
3	77
4	02
4	69
5	
5	
6	
6	
7	3

Density Curves

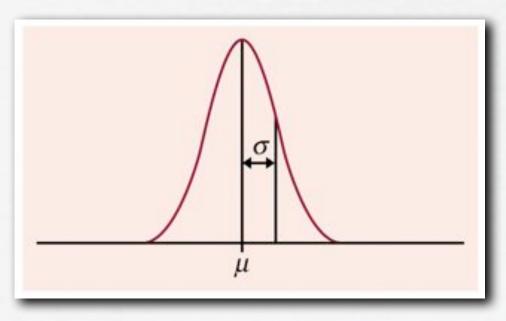
A Density Curve is a smooth, idealized mathematical model of a distribution.

> The area under every density curve is I.



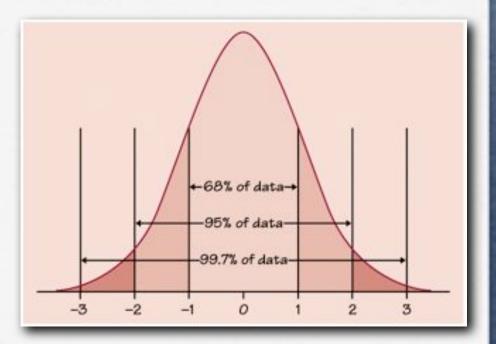
The Normal Distribution

- Many distributions of data and many statistical applications can be described by an approximately normal distribution.
 - Symmetric, Bell-shaped Curve
 - \Box Centered at Mean μ
 - \Box Described as $N(\mu, \sigma)$



Empirical Rule

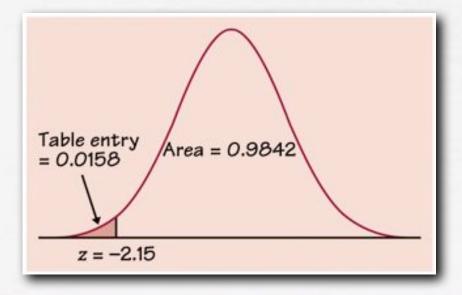
- One particularly useful fact about approximately Normal distributions is that
 - 68% of observations fall
 within one standard
 deviation of µ
 - 95% fall within 2 standard deviations of µ
 - 99.7% fall within 3 standard deviations of µ



Standard Normal Calculations

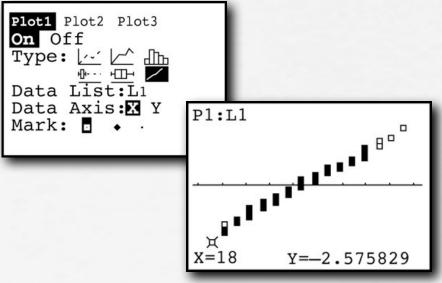
The empirical rule is useful when an observation falls exactly 1,2,or 3 standard deviations from µ. When it doesn't, we must standardize the value {zscore} and use a table to calculate percentiles, etc.

$$z = \frac{x - \mu}{\sigma}$$



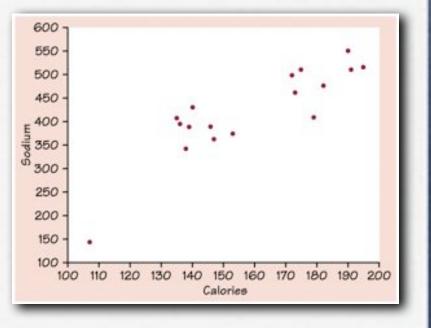
Assessing Normality

- To assess the normality of a set of data, we can't rely on the naked eye alone - not all mound shaped distributions are normal.
- Instead, we should make a Normal Quantile Plot and look for linearity.
 Plot1 Plot2 Plot3
 - \Box Linearity \rightarrow Normality

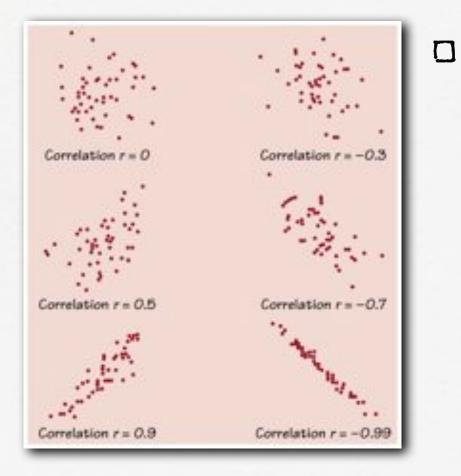


Bivariate Relationships

- Like describing univariate data, the first thing you should do with bivariate data is make a plot.
 - Scatterplot
 - Note Strength, Direction, Form



Correlation "r"



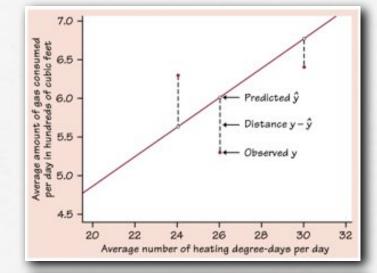
We can describe the strength of a linear relationship with the Correlation Coefficient, r

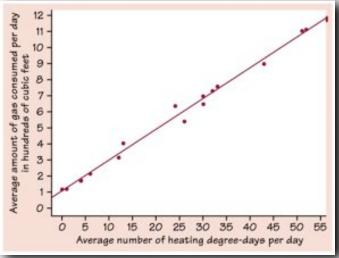
□ -|≤r≤|

 The closer r is to 1 or -1, the stronger the linear relationship between x and y.

Least Squares Regression

- When we observe a linear relationship between x and y, we often want to describe it with a "line of best fit" y=a+bx.
 - We can find this line by performing least-squares regression.
 - We can use the resulting equation to predict y-values for given xvalues.

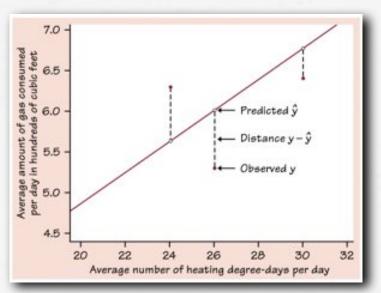


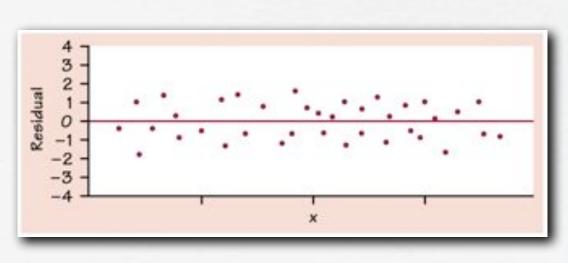


Assessing the Fit

If we hope to make useful predictions of y we must assess whether or not the LSRL is indeed the best fit. If not, we may need to find a different model.

Residual Plot





Making Predictions

If you are satisfied that the LSRL provides an appropriate model for predictions, you can use it to predict a y-hat for x's within the observed range of x-values.

$$\Box \quad \hat{y} = a + bx$$

Predictions for observed x-values can be assessed by noting the residual.

 \Box Residual = observed y - predicted y

NonLinear Relationships

- If data is not best described by a LSRL, we may be able to find a Power or Exponential model that can be used for more accurate predictions.
 - **D** Power Model: $\hat{y} = 10^a x^b$
 - **Exponential Model:** $\hat{y} = 10^{a} 10^{bx}$

Transforming Data

- \Box If (x,y) is non-linear, we can transform it to try to achieve a linear relationship.
 - If transformed data appears linear, we can find a LSRL and then transform back to the original terms of the data
- \Box (x, log y) LSRL > Exponential Model
- $\Box \ (\log x, \log y) \ LSRL > Power Model$

Sampling Design

- Our goal in statistics is often to answer a question about a population using information from a sample.
- Observational Study vs. Experiment
 - □ There are a number of ways to select a sample.
 - We must be sure the sample is representative of the population in question.

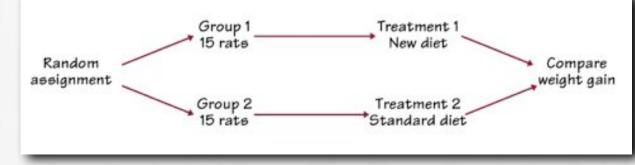
Sampling

- If you are performing an observational study, your sample can be obtained in a number of ways:
 - Convenience Cluster
 - □ Systematic
 - Simple Random Sample
 - Stratified Random Sample

ran	dInt	:(0,	, 9	,5)	
	{5	6	5	7 1	}
	dInt	100		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	{5 6	55	5	3 4	1}
ran	dInt	:(0,	99	9,10)
{81	23	86	2	40.	••

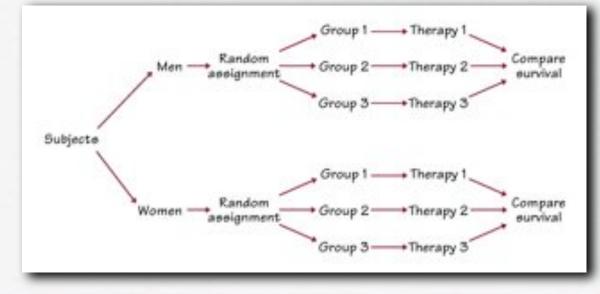
Experimental Design

- In an experiment, we impose a treatment with the hopes of establishing a causal relationship.
- Experiments exhibit 3 Principles
 - Randomization
 - Control
 - Replication



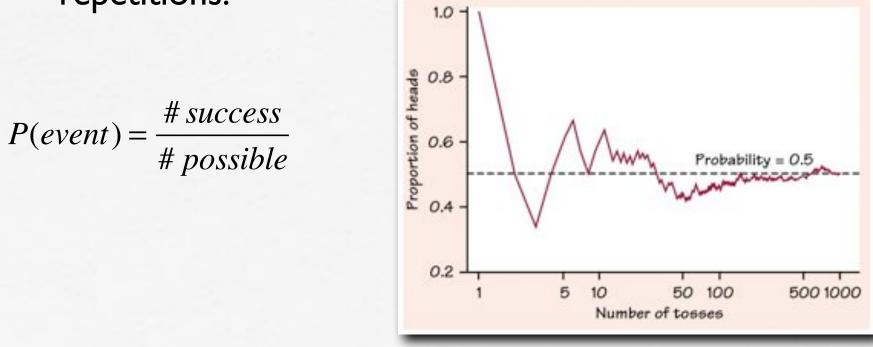
Experimental Designs

- Like Observational Studies, Experiments can take a number of different forms:
 - Completely Controlled Randomized Comparative Experiment
 - Blocked
 - Matched Pairs



Probability

Probability is a measurement of the likelihood of an event. It represents the proportion of times we'd expect to see an outcome in a long series of repetitions.



Probability Rules

The following facts/formulas are helpful in calculating and interpreting the probability of an event:

- $\Box \quad 0 \le P(A) \le I$
- P(SampleSpace) = I
- $\Box P(A^{C}) = I P(A)$
- \square P(A or B) = P(A) + P(B) P(both)
- \square P(A then B) = P(A) P(B|A)
- \boxtimes A and B are independent iff P(B) = P(B|A)

Strategies

- When calculating probabilities, it helps to consider the Sample Space.
 - List all outcomes if possible.
 - Draw a tree diagram or Venn diagram
 - Use the Multiplication Counting Principle
- Sometimes it is easier to use common sense rather than memorizing formulas!