Procedure	Formula	Conditions	Calculator Options
	One Sam	ple Mean and Proportion	
Confidence Interval for mean μ when given σ	$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}}$	 SRS Given value of population standard deviation σ Population distribution is normal (if not stated, use CLT as long as <i>n</i> is large) 	ZInterval Inet: Lene: Stats 5:0 List:L1 Freq:1 C-Level:.95 Calculate
Hypothesis Test for mean μ when given σ (H _o : $\mu = \mu_o$)	$z = \frac{\overline{x} - \mu_o}{\sigma / \sqrt{n}}$	SAME AS ABOVE CI	Z-Test Inpt: DataZ-Test Inpt: DataInpt: μ 0:0 $\sigma:0$ List:L1 Freq:1 $u:FMO < \mu 0 > \mu 0$ Calculate DrawZ-Test Inpt: DataState μ 0:0 $\sigma:0$ List:L1 Calculate DrawInpt: DataState μ 0:0 $\sigma:0$ $\pi:0$ Calculate Draw*Can also find p-value using 2 nd -Distr normalcdf(lower, upper, mean, sd)
CI for mean μ when σ is unknown	$\overline{x} \pm t * \frac{s}{\sqrt{n}}$ with $df = n - 1$	1. SRS 2. Using value of sample standard deviation <i>s</i> to estimate σ 3. Population distribution is given as normal OR <i>n</i> > 40 (meaning <i>t</i> procedures are robust even if skewness and outliers exist) OR 15 < <i>n</i> < 40 with normal probability plot showing little skewness and no extreme outliers OR <i>n</i> < 15 with npp showing no outliers and no skewness	TInterval Inpt: Dist: L1 Freq:1 C-Level:.95 Calculate TInterval Inpt:Data State X:19.4 Sx:12.25969004 n:5 C-Level:.95 Calculate

Inference	Procedure	Summary –	AP	Statistics
-----------	-----------	-----------	----	------------

Test for mean μ when σ is unknown (H _o : $\mu = \mu_o$)	$t = \frac{\overline{x} - \mu_o}{s / \sqrt{n}}$ with $df = n - 1$	SAME AS ABOVE CI	T-Test Inpt:DeteT-Test Inpt:DataInpt:DeteStats $\mu_0:0$ List:L1 Freq:1 Calculate Draw $\mu_0:0$ X:19.4 S:12.25969004 n:5 Calculate DrawCalculate Draw $\mu_0:0$ X:12.25969004 n:5 Calculate Draw*Can also find p-value using 2^{nd} -Distr
CI for proportion <i>p</i>	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	 SRS Population is at least 10 times n Counts of success np̂ and failures n(1-p̂) are both at least 10 (these counts verify the use of the normal approximation) 	1-PropZInt x:0 n:0 C-Level:.95 Calculate
Test for proportion p (H _o : $p = p_o$)	$z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$	1. SRS 2. Population is at least 10 times n 3. Counts of success np_o and failures $n(1 - p_o)$ are both at least 10 (these counts verify the use of the normal approximation)	1-PropZTest po:0 x:0 n:0 prop∰po <po>po Calculate Draw *Can also find <i>p</i>-value using 2nd-Distr normalcdf(lower, upper, mean, sd)</po>

Two Sample Means and Proportions				
CI for mean μ1-μ2 when σ is unknown	$(\overline{x}_{1} - \overline{x}_{2}) \pm t * \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$ with conservative df = n - 1 of smaller sample	1. Populations are independent 2. Both samples are from SRSs 3. Using value of sample standard deviation <i>s</i> to estimate σ 4. Population distributions are given as normal OR $n_1 + n_2 >$ 40 (meaning <i>t</i> procedures are robust even if skewness and outliers exist) OR 15 < $n_1 + n_2$ < 40 with normal probability plots showing little skewness and no extreme outliers OR n_1 + $n_2 <$ 15 with npps showing no outliers and no skewness	2-SampTInt Inpt: Date Stats List1:L1 List2:L2 Freq1:1 C-Level:.95 ↓Pooled: NE Yes 2-SampTInt Inpt:Data State X1:0 Sx1:0 n1:0 x2:0 Sx2:0 ↓n2:0	
Test for mean $\mu_1-\mu_2$ when σ is unknown (H ₀ : $\mu_1 = \mu_2$)	$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ with conservative df = n - 1 of smaller sample	SAME AS ABOVE CI	*Can also find <i>p</i> -value using 2^{nd} -Distr tcdf(lower, upper, df) where df is either conservative estimate or value using long formula that calculator does automatically!	

CI for proportion $p_1 - p_2$	$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	1. Populations are independent 2. Both samples are from SRSs 3. Populations are at least 10 times n 4. Counts of success $n_1\hat{p}_1$ and $n_2\hat{p}_2$ and failures $n_1(1-\hat{p}_1)$ and $n_2(1-\hat{p}_2)$ are all at least 5 (these counts verify the use of the normal approximation)	2-PropZInt ×1:5 n1:20 ×2:7 n2:21 C-Level:.95 Calculate
Test for proportion $p_1 - p_2$	$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ where $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$	1-3 are SAME AS ABOVE CI 4. Counts of success $n_1\hat{p}$ and $n_2\hat{p}$ and failures $n_1(1-\hat{p})$ and $n_2(1-\hat{p})$ are all at least 5 (these counts verify the use of the normal approximation)	2-PropZTest ×1:5 n1:20 ×2:7 n2:21 p1:20 <p2>p2 Calculate Draw *Can also find <i>p</i>-value using 2nd-Distr normalcdf(lower, upper, mean, sd) where mean and sd are values from numerator and denominator of the formula for the test statistic</p2>

Categorical Distributions				
Chi Square Test	$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ G. of Fit – 1 sample, 1 variable Independence – 1 sample, 2 variables Homogeneity – 2 samples, 2 variables	 All expected counts are at least 1 No more than 20% of expected counts are less than 5 	*Can also find <i>p</i> -value using 2 nd -Distr x ² cdf(lower, upper, df)	
Slope				
CI for β	$b \pm t * s_b$ where $s_b = \frac{s}{\sqrt{\sum (x - \bar{x})^2}}$ and $s = \sqrt{\frac{1}{n-2}\sum (y - \hat{y})^2}$ with $df = n - 2$	 For any fixed x, y varies according to a normal distribution Standard deviation of y is same for all x values 	LinRe9TInt Xlist:L1 Ylist:L2 Fre9:1 C-Level:.95 Re9EQ: Calculate	
Test for β	$t = \frac{b}{s_b}$ with $df = n - 2$	SAME AS ABOVE CI	LinRegTTest Xlist:L1 Ylist:L2 Freq:1 8 % P:EX <0 >0 RegEQ: Calculate *You will typically be given computer output for inference for regression	

Variable Legend – here are a few of the commonly used variables

Variable	Meaning	Variable	Meaning
μ	population mean mu	CLT	Central Limit Theorem
σ	population standard deviation sigma	SRS	Simple Random Sample
\overline{x}	sample mean x-bar	npp	Normal Probability Plot (last option on stat plot)
S	sample standard deviation	р	population proportion
Z.	test statistic using normal distribution	\hat{p}	sample proportion p-hat or pooled proportion p-hat for two sample
			procedures
<i>z</i> *	critical value representing confidence	<i>t</i> *	critical value representing confidence level C
	level C		
t	test statistic using <i>t</i> distribution	n	sample size

Matched Pairs – same as one sample procedures but one list is created from the difference of two matched lists (i.e. pre and post test scores of left and right hand measurements)

Conditions – show that they are met (i.e. substitute values in and show sketch of npp) ... don't just list them