Inference Procedure Summary - AP Statistics

Procedure	Formula	Conditions	Calculator Options
One Sample Mean and Proportion			
Confidence Interval for mean μ when given σ	$\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}$	1. SRS 2. Given value of population standard deviation σ 3. Population distribution is normal (if not stated, use CLT as long as n is large)	
Hypothesis Test for mean μ when given σ $\left(\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}}\right)$	$z=\frac{\bar{x}-\mu_{o}}{\sigma / \sqrt{n}}$	SAME AS ABOVE CI	 *Can also find p-value using $2^{\text {nd }}$-Distr normalcdf(lower, upper, mean, sd)
CI for mean μ when σ is unknown	$\begin{gathered} \bar{x} \pm t * \frac{s}{\sqrt{n}} \\ \text { with } d f=n-1 \end{gathered}$	1. SRS 2. Using value of sample standard deviation s to estimate 3. Population distribution is given as normal OR $n>40$ (meaning t procedures are robust even if skewness and outliers exist) OR $15<n<40$ with normal probability plot showing little skewness and no extreme outliers OR $n<15$ with npp showing no outliers and no skewness	

Inference Procedure Summary - AP Statistics

Test for mean μ when σ is unknown $\left(\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}}\right)$	$t=\frac{\bar{x}-\mu_{o}}{s / \sqrt{n}}$ $\text { with } d f=n-1$	SAME AS ABOVE CI	 *Can also find p-value using $2^{\text {nd }}$-Distr tcdf(lower, upper, df)
CI for proportion p	$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	1. SRS 2. Population is at least 10 times n 3. Counts of success $n \hat{p}$ and failures $n(1-\hat{p})$ are both at least 10 (these counts verify the use of the normal approximation)	$\begin{aligned} & \text { 1-PropZInt } \\ & \text { x: } \\ & \text { na } \\ & \text { C-Evel: } 95 \\ & \text { Ealoulate } \end{aligned}$
Test for proportion p $\left(\mathrm{H}_{\mathrm{o}}: p=p_{\mathrm{o}}\right)$	$z=\frac{\hat{p}-p_{o}}{\sqrt{\frac{p_{o}\left(1-p_{o}\right)}{n}}}$	1. SRS 2. Population is at least 10 times n 3. Counts of success $n p_{o}$ and failures $n\left(1-p_{o}\right)$ are both at least 10 (these counts verify the use of the normal approximation)	 *Can also find p-value using $2^{\text {nd }}$-Distr normalcdf(lower, upper, mean, sd)

Inference Procedure Summary - AP Statistics

Two Sample Means and Proportions			
CI for mean $\mu_{1}-\mu_{2}$ when σ is unknown	$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t * \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ with conservative $d f=n-1$ of smaller sample	1. Populations are independent 2. Both samples are from SRSs 3. Using value of sample standard deviation s to estimate σ 4. Population distributions are given as normal OR $n_{1}+n_{2}>$ 40 (meaning t procedures are robust even if skewness and outliers exist) OR $15<n_{1}+n_{2}$ < 40 with normal probability plots showing little skewness and no extreme outliers OR n_{1} $+n_{2}<15$ with npps showing no outliers and no skewness	
Test for mean $\mu_{1}-\mu_{2}$ when σ is unknown $\left(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\right)$	$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ with conservative $d f=n-1$ of smaller sample	SAME AS ABOVE CI	 *Can also find p-value using $2^{\text {nd }}$-Distr tcdf(lower, upper, df) where df is either conservative estimate or value using long formula that calculator does automatically!

Inference Procedure Summary - AP Statistics

CI for proportion $p_{1}-p_{2}$	$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z * \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$	1. Populations are independent 2. Both samples are from SRSs 3. Populations are at least 10 times n 4. Counts of success $n_{1} \hat{p}_{1}$ and $n_{2} \hat{p}_{2}$ and failures $n_{1}\left(1-\hat{p}_{1}\right)$ and $n_{2}\left(1-\hat{p}_{2}\right)$ are all at least 5 (these counts verify the use of the normal approximation)	
Test for proportion $p_{1}-p_{2}$	$\begin{gathered} z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\ \text { where } \hat{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}} \end{gathered}$	1-3 are SAME AS ABOVE CI 4. Counts of success $n_{1} \hat{p}$ and $n_{2} \hat{p}$ and failures $n_{1}(1-\hat{p})$ and $n_{2}(1-\hat{p})$ are all at least 5 (these counts verify the use of the normal approximation)	 *Can also find p-value using $2^{\text {nd }}$-Distr normalcdf(lower, upper, mean, sd) where mean and sd are values from numerator and denominator of the formula for the test statistic

Inference Procedure Summary - AP Statistics

Categorical Distributions			
Chi Square Test	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}$ G. of Fit - 1 sample, 1 variable Independence - 1 sample, 2 variables Homogeneity -2 samples, 2 variables	1. All expected counts are at least 1 2. No more than 20% of expected counts are less than 5	
Slope			
CI for β	$\begin{gathered} b \pm t * s_{b} \text { where } s_{b}=\frac{s}{\sqrt{\sum(x-\bar{x})^{2}}} \\ \text { and } s=\sqrt{\frac{1}{n-2} \sum(y-\hat{y})^{2}} \\ \text { with } d f=n-2 \end{gathered}$	1. For any fixed x, y varies according to a normal distribution 2. Standard deviation of y is same for all x values	
Test for β	$t=\frac{b}{s_{b}} \text { with } d f=n-2$	SAME AS ABOVE CI	 *You will typically be given computer output for inference for regression

Inference Procedure Summary - AP Statistics

Variable Legend - here are a few of the commonly used variables

Variable	Meaning	Variable	Meaning
μ	population mean mu	CLT	Central Limit Theorem
σ	population standard deviation sigma	SRS	Simple Random Sample
\bar{x}	sample mean x-bar	npp	Normal Probability Plot (last option on stat plot)
s	sample standard deviation	p	population proportion
z	test statistic using normal distribution	\hat{p}	sample proportion p-hat or pooled proportion p-hat for two sample procedures
z^{*}	critical value representing confidence level C	t^{*}	critical value representing confidence level C
t	test statistic using t distribution	n	sample size

Matched Pairs - same as one sample procedures but one list is created from the difference of two matched lists (i.e. pre and post test scores of left and right hand measurements)

Conditions - show that they are met (i.e. substitute values in and show sketch of npp) ... don't just list them

