Unit 4A Exam Review Answers

1. 5 - 10%; 2 - 20%; 2 - 30%; 1 - 50%

Χ	10%	20%	30%	50%
P(X = x)	5/10	2/10	2/10	1/10

a.
$$P(>20\%) = P(30\%) + P(50\%) = 2/10 + 1/10 = 0.30$$

b.
$$P(<20\%) = P(10\%) = 5/10 = 0.50$$

c.
$$P(50\% \cap 50\%) = \left(\frac{1}{10}\right)^2 = 0.01$$

d.
$$P(50\%^{C} \cap 50\%^{C} \cap 50\%^{C}) = \left(\frac{9}{10}\right)^{3} = 0.729$$

OR: binomial B(3, 0.1)
$$P(X = 0) = 0.729$$

e.
$$P(30\%^c \cap 30\%^c \cap 30\%^c \cap 30\%^c \cap 30\%^c \cap 30\%) = \left(\frac{8}{10}\right)^5 \cdot \frac{2}{10} = 0.0655$$

f.
$$1-P(50\%^{C} \cap 50\%^{C} \cap 50\%^{C} \cap 50\%^{C} \cap 50\%^{C}) = 1 - \left(\frac{9}{10}\right)^{5} = 0.4095$$

OR: binomial B(5, 0.1)
$$P(X \ge 1) = 1 - P(X \le 0) = 0.4095$$

g. Both are incorrect. Each roll of the rubber cube is independent of any other roll. So the probability of getting a 50% discount is the same no matter what the previous values were.

2. Dogs and cats

a. D = Family owns at least one dog C = Family owns at least one cat

$$(.39 + .34) - .60 = .13$$

b.
$$P(C^{C} \cap D^{C}) = 0.40$$

c.
$$P(C \cap D) = 0.13$$

d.
$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{0.13}{0.39} = 0.33$$

- e. No. $P(C \cap D) = 0.13 \neq 0$. A household can own a cat and a dog at the same time.
- f. Yes. Knowing that a family has a dog doesn't change the probability that they own a cat. P(C) = 0.34; P(C|D) = 0.33

3. a.
$$P(X = 3) = 0.28$$

b.
$$P(X \le 3) = 0.16 + 0.22 + 0.28 = 0.66$$

c.
$$P(1 < X \le 4) = 0.22 + 0.28 + 0.20 = 0.70$$

d.
$$E(X) = 1(0.16) + 2(0.22) + 3(0.28) + 4(0.20) + 5(0.14) = 2.94$$

 $Var(X) = (1 - 2.94)^2(0.16) + (2 - 2.94)^2(0.22) + (3 - 2.94)^2(0.28) + (4 - 2.94)^2(0.20) + (5 - 2.94)^2(0.14)$
 $Var(X) = 1.6164$
 $SD(X) = 1.2714$

4. (a)
$$P(A \cup B) = 0.65 + 0.23 - 0.15 = 0.73$$

(b)
$$P(B|A) = \frac{0.15}{0.65} = 0.2307$$

- (c) No. P(A n B) is not 0
- (d) Possibly. P(B|A) is very close to P(B). Justify whatever answer you give!!

5.
$$P(D \cup C) = P(D) + P(C) = 0.78$$

6.
$$P(K n R) = P(K)*P(R) = 0.1633$$

7. (a)
$$P(F n H) = P(H|F) * P(F) = 0.0429$$

(b)
$$P(F \cup H) = P(F) + P(H) - P(F \cap H) = 0.5671$$

8.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $0.78 = 0.25 + P(B) - 0.12$
 $P(B) = 0.65$

9.
$$P(R) = 0.37$$
 $P(U|R) = 0.15 = 0.405$ $P(R n U) = 0.15$

10.
$$P(M) = 0.5$$
 $P(J|M) = 0.20 = 0.40$ $P(M n J) = 0.20$

Brea	kfast
------	-------

		Yes	No	
Sex	Male	66	66	132
	Female	125	74	199
		191	140	331

11.

a.
$$P(F) = 199/331 = 0.6012$$

b.
$$P(B) = 191/331 = 0.5770$$

c.
$$P(F \cap B) = 125/331 = 0.3776$$

d.
$$P(B|F) = 125/199 = 0.6281$$

e.
$$P(F|B) = 125/191 = 0.6545$$

f. No it doesn't appear that they are independent. Knowing that a student is female changes the probability that they are breakfast. $P(B|F) = 0.6281 \neq P(B) = 0.5770$

12. Tree Diagram

